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Abstract—Cloud Computing has been envisioned as the next-generation architecture of IT Enterprise. It moves the application

software and databases to the centralized large data centers, where the management of the data and services may not be fully

trustworthy. This unique paradigm brings about many new security challenges, which have not been well understood. This work

studies the problem of ensuring the integrity of data storage in Cloud Computing. In particular, we consider the task of allowing a third

party auditor (TPA), on behalf of the cloud client, to verify the integrity of the dynamic data stored in the cloud. The introduction of TPA

eliminates the involvement of the client through the auditing of whether his data stored in the cloud are indeed intact, which can be

important in achieving economies of scale for Cloud Computing. The support for data dynamics via the most general forms of data

operation, such as block modification, insertion, and deletion, is also a significant step toward practicality, since services in Cloud

Computing are not limited to archive or backup data only. While prior works on ensuring remote data integrity often lacks the support of

either public auditability or dynamic data operations, this paper achieves both. We first identify the difficulties and potential security

problems of direct extensions with fully dynamic data updates from prior works and then show how to construct an elegant verification

scheme for the seamless integration of these two salient features in our protocol design. In particular, to achieve efficient data

dynamics, we improve the existing proof of storage models by manipulating the classic Merkle Hash Tree construction for block tag

authentication. To support efficient handling of multiple auditing tasks, we further explore the technique of bilinear aggregate signature

to extend our main result into a multiuser setting, where TPA can perform multiple auditing tasks simultaneously. Extensive security

and performance analysis show that the proposed schemes are highly efficient and provably secure.

Index Terms—Data storage, public auditability, data dynamics, cloud computing.
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1 INTRODUCTION

SEVERAL trends are opening up the era of Cloud Comput-
ing, which is an Internet-based development and use of

computer technology. The ever cheaper and more powerful
processors, together with the “software as a service” (SaaS)
computing architecture, are transforming data centers into
pools of computing service on a huge scale. Meanwhile, the
increasing network bandwidth and reliable yet flexible
network connections make it even possible that clients can
now subscribe high-quality services from data and software
that reside solely on remote data centers.

Although envisioned as a promising service platform for
the Internet, this new data storage paradigm in “Cloud”
brings about many challenging design issues which have
profound influence on the security and performance of the
overall system. One of the biggest concerns with cloud data
storage is that of data integrity verification at untrusted

servers. For example, the storage service provider, which
experiences Byzantine failures occasionally, may decide to
hide the data errors from the clients for the benefit of their
own. What is more serious is that for saving money and
storage space the service provider might neglect to keep or
deliberately delete rarely accessed data files which belong to
an ordinary client. Consider the large size of the outsourced
electronic data and the client’s constrained resource cap-
ability, the core of the problem can be generalized as how can
the client find an efficient way to perform periodical integrity
verifications without the local copy of data files.

In order to solve the problem of data integrity checking,
many schemes are proposed under different systems and
security models [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. In
all these works, great efforts are made to design solutions
that meet various requirements: high scheme efficiency,
stateless verification, unbounded use of queries and
retrievability of data, etc. Considering the role of the verifier
in the model, all the schemes presented before fall into two
categories: private auditability and public auditability.
Although schemes with private auditability can achieve
higher scheme efficiency, public auditability allows anyone,
not just the client (data owner), to challenge the cloud
server for correctness of data storage while keeping no
private information. Then, clients are able to delegate the
evaluation of the service performance to an independent
third party auditor (TPA), without devotion of their
computation resources. In the cloud, the clients themselves
are unreliable or may not be able to afford the overhead of
performing frequent integrity checks. Thus, for practical

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011 847

. Q. Wang, C. Wang, and K. Ren are with the Department of Electrical and
Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616.
E-mail: {qian, cong, kren}@ece.iit.edu.

. W. Lou is with the Department of Electrical and Computer Engineering,
Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA
01609. E-mail: wjlou@ece.wpi.edu.

. J. Li is with the School of Computer Science and Educational Software,
Guangzhou University, Room 1610, Yudongxi Road 36, Tianhe District,
Guangzhou 510500, Guangdong Province, China. E-mail: jli25@iit.edu.

Manuscript received 29 Mar. 2010; revised 10 Aug. 2010; accepted 25 Aug.
2010; published online 20 Oct. 2010.
Recommended for acceptance by C.-Z. Xu.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-03-0184.
Digital Object Identifier no. 10.1109/TPDS.2010.183.

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society



www.manaraa.com

use, it seems more rational to equip the verification protocol
with public auditability, which is expected to play a more
important role in achieving economies of scale for Cloud
Computing. Moreover, for efficiency consideration, the
outsourced data themselves should not be required by the
verifier for the verification purpose.

Another major concern among previous designs is that of
supporting dynamic data operation for cloud data storage
applications. In Cloud Computing, the remotely stored
electronic data might not only be accessed but also updated
by the clients, e.g., through block modification, deletion,
insertion, etc. Unfortunately, the state of the art in the
context of remote data storage mainly focus on static data
files and the importance of this dynamic data updates has
received limited attention so far [2], [3], [4], [5], [7], [10],
[12]. Moreover, as will be shown later, the direct extension
of the current provable data possession (PDP) [2] or proof of
retrievability (PoR) [3], [4] schemes to support data
dynamics may lead to security loopholes. Although there
are many difficulties faced by researchers, it is well believed
that supporting dynamic data operation can be of vital
importance to the practical application of storage out-
sourcing services. In view of the key role of public
auditability and data dynamics for cloud data storage, we
propose an efficient construction for the seamless integra-
tion of these two components in the protocol design. Our
contribution can be summarized as follows:

1. We motivate the public auditing system of data
storage security in Cloud Computing, and propose a
protocol supporting for fully dynamic data opera-
tions, especially to support block insertion, which is
missing in most existing schemes.

2. We extend our scheme to support scalable and
efficient public auditing in Cloud Computing. In
particular, our scheme achieves batch auditing where
multiple delegated auditing tasks from different
users can be performed simultaneously by the TPA.

3. We prove the security of our proposed construction
and justify the performance of our scheme through
concrete implementation and comparisons with the
state of the art.

1.1 Related Work

Recently, much of growing interest has been pursued in the
context of remotely stored data verification [2], [3], [4], [5],
[6], [7], [8], [9], [10], [12], [13], [14], [15]. Ateniese et al. [2] are
the first to consider public auditability in their defined
“provable data possession” model for ensuring possession
of files on untrusted storages. In their scheme, they utilize
RSA-based homomorphic tags for auditing outsourced
data, thus public auditability is achieved. However,
Ateniese et al. do not consider the case of dynamic data
storage, and the direct extension of their scheme from static
data storage to dynamic case may suffer design and security
problems. In their subsequent work [12], Ateniese et al.
propose a dynamic version of the prior PDP scheme.
However, the system imposes a priori bound on the number
of queries and does not support fully dynamic data
operations, i.e., it only allows very basic block operations
with limited functionality, and block insertions cannot be

supported. In [13], Wang et al. consider dynamic data
storage in a distributed scenario, and the proposed
challenge-response protocol can both determine the data
correctness and locate possible errors. Similar to [12], they
only consider partial support for dynamic data operation.
Juels and Kaliski [3] describe a “proof of retrievability”
model, where spot-checking and error-correcting codes are
used to ensure both “possession” and “retrievability” of
data files on archive service systems. Specifically, some
special blocks called “sentinels” are randomly embedded
into the data file F for detection purpose, and F is further
encrypted to protect the positions of these special blocks.
However, like [12], the number of queries a client can
perform is also a fixed priori, and the introduction of
precomputed “sentinels” prevents the development of
realizing dynamic data updates. In addition, public audit-
ability is not supported in their scheme. Shacham and
Waters [4] design an improved PoR scheme with full proofs
of security in the security model defined in [3]. They use
publicly verifiable homomorphic authenticators built from
BLS signatures [16], based on which the proofs can be
aggregated into a small authenticator value, and public
retrievability is achieved. Still, the authors only consider
static data files. Erway et al. [14] were the first to explore
constructions for dynamic provable data possession. They
extend the PDP model in [2] to support provable updates to
stored data files using rank-based authenticated skip lists.
This scheme is essentially a fully dynamic version of the
PDP solution. To support updates, especially for block
insertion, they eliminate the index information in the “tag”
computation in Ateniese’s PDP model [2] and employ
authenticated skip list data structure to authenticate the tag
information of challenged or updated blocks first before the
verification procedure. However, the efficiency of their
scheme remains unclear.

Although the existing schemes aim at providing integrity
verification for different data storage systems, the problem
of supporting both public auditability and data dynamics
has not been fully addressed. How to achieve a secure and
efficient design to seamlessly integrate these two important
components for data storage service remains an open
challenging task in Cloud Computing.

Portions of the work presented in this paper have
previously appeared as an extended abstract [1]. We revise
the paper a lot and add more technical details as compared to
[1]. First, in Section 3.3, before the introduction of our
proposed construction, we present two basic solutions (i.e.,
the MAC-based and signature-based schemes) for realizing
data auditability and discuss their demerits in supporting
public auditability and data dynamics. Second, we generalize
the support of data dynamics to both PoR and PDP models
and discuss the impact of dynamic data operations on the
overall system efficiency both. In particular, we emphasize
that while dynamic data updates can be performed efficiently
in PDP models more efficient protocols need to be designed
for the update of the encoded files in PoR models. For
completeness, the designs for distributed data storage
security are also discussed in Section 3.5. Third, in Section 3.4,
we extend our data auditing scheme for the single client and
explicitly include a concrete description of the multiclient
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data auditing scheme. We also redo the whole experiments
and present the performance comparison between the multi-
client data auditing scheme and the individual auditing
scheme in Section 5. Finally, for the proposed theorems in this
paper, we provide formal security proofs under the random
oracle model, which are lacking in [1].

Organization. The rest of the paper is organized as
follows: In Section 2, we define the system model, security
model, and our design goals. Then, we present our scheme
in Section 3 and provide security analysis in Section 4,
respectively. We further analyze the experiment results and
show the practicality of our schemes in Section 5. Finally,
we conclude in Section 6.

2 PROBLEM STATEMENT

2.1 System Model

A representative network architecture for cloud data
storage is illustrated in Fig. 1. Three different network
entities can be identified as follows:

. Client: an entity, which has large data files to be
stored in the cloud and relies on the cloud for data
maintenance and computation, can be either indivi-
dual consumers or organizations;

. Cloud Storage Server (CSS): an entity, which is
managed by Cloud Service Provider (CSP), has
significant storage space and computation resource
to maintain the clients’ data;

. Third Party Auditor: an entity, which has expertise
and capabilities that clients do not have, is trusted to
assess and expose risk of cloud storage services on
behalf of the clients upon request.

In the cloud paradigm, by putting the large data files on
the remote servers, the clients can be relieved of the burden of
storage and computation. As clients no longer possess their
data locally, it is of critical importance for the clients to ensure
that their data are being correctly stored and maintained.
That is, clients should be equipped with certain security
means so that they can periodically verify the correctness of
the remote data even without the existence of local copies. In
case that clients do not necessarily have the time, feasibility or
resources to monitor their data, they can delegate the
monitoring task to a trusted TPA. In this paper, we only
consider verification schemes with public auditability: any
TPA in possession of the public key can act as a verifier. We

assume that TPA is unbiased while the server is untrusted.
For application purposes, the clients may interact with the
cloud servers via CSP to access or retrieve their prestored
data. More importantly, in practical scenarios, the client may
frequently perform block-level operations on the data files.
The most general forms of these operations we consider in
this paper are modification, insertion, and deletion. Note that we
don’t address the issue of data privacy in this paper, as the
topic of data privacy in Cloud Computing is orthogonal to the
problem we study here.

2.2 Security Model

Following the security model defined in [4], we say that the
checking scheme is secure if 1) there exists no polynomial-
time algorithm that can cheat the verifier with non-
negligible probability; and 2) there exists a polynomial-
time extractor that can recover the original data files by
carrying out multiple challenges-responses. The client or
TPA can periodically challenge the storage server to ensure
the correctness of the cloud data, and the original files can
be recovered by interacting with the server. The authors in
[4] also define the correctness and soundness of their
scheme: the scheme is correct if the verification algorithm
accepts when interacting with the valid prover (e.g., the
server returns a valid response) and it is sound if any
cheating server that convinces the client it is storing the data
file is actually storing that file. Note that in the “game”
between the adversary and the client, the adversary has full
access to the information stored in the server, i.e., the
adversary can play the part of the prover (server). The goal
of the adversary is to cheat the verifier successfully, i.e.,
trying to generate valid responses and pass the data
verification without being detected.

Our security model has subtle but crucial difference from
that of the existing PDP or PoR models [2], [3], [4] in the
verification process. As mentioned above, these schemes do
not consider dynamic data operations, and the block
insertion cannot be supported at all. This is because the
construction of the signatures is involved with the file index
information i. Therefore, once a file block is inserted, the
computation overhead is unacceptable since the signatures
of all the following file blocks should be recomputed with
the new indexes. To deal with this limitation, we remove
the index information i in the computation of signatures
and use HðmiÞ as the tag for block mi instead of HðnamekiÞ
[4] or hðvkiÞ [3], so individual data operation on any file
block will not affect the others. Recall that in existing PDP
or PoR models [2], [4], HðnamekiÞ or hðvkiÞ should be
generated by the client in the verification process. However,
in our new construction the client has no capability to
calculate HðmiÞ without the data information. In order to
achieve this blockless verification, the server should take
over the job of computing HðmiÞ and then return it to the
prover. The consequence of this variance will lead to a
serious problem: it will give the adversary more opportu-
nities to cheat the prover by manipulating HðmiÞ or mi. Due
to this construction, our security model differs from that of
the PDP or PoR models in both the verification and the data
updating process. Specifically, the tags in our scheme
should be authenticated in each protocol execution other
than calculated or prestored by the verifier (the details will
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be shown in Section 3). In the following descriptions, we
will use server and prover (or client, TPA, and verifier)
interchangeably.

2.3 Design Goals

Our design goals can be summarized as the following:

1. Public auditability for storage correctness assurance:
to allow anyone, not just the clients who originally
stored the file on cloud servers, to have the capability
to verify the correctness of the stored data on demand.

2. Dynamic data operation support: to allow the clients
to perform block-level operations on the data files
while maintaining the same level of data correctness
assurance. The design should be as efficient as
possible so as to ensure the seamless integration of
public auditability and dynamic data operation
support.

3. Blockless verification: no challenged file blocks
should be retrieved by the verifier (e.g., TPA) during
verification process for efficiency concern.

3 THE PROPOSED SCHEME

In this section, we present our security protocols for cloud
data storage service with the aforementioned research goals
in mind. We start with some basic solutions aiming to
provide integrity assurance of the cloud data and discuss
their demerits. Then, we present our protocol which
supports public auditability and data dynamics. We also
show how to extent our main scheme to support batch
auditing for TPA upon delegations from multiusers.

3.1 Notation and Preliminaries

Bilinear map. A bilinear map is a map e : G�G! GT ,
where G is a Gap Diffie-Hellman (GDH) group and GT is
another multiplicative cyclic group of prime order pwith the
following properties [16]: 1) Computable: there exists an
efficiently computable algorithm for computing e; 2) Bi-
linear: for all h1; h2 2 G and a; b 2 ZZp; eðha1; hb2Þ ¼ eðh1; h2Þab;
3) Nondegenerate: eðg; gÞ 6¼ 1, where g is a generator of G.

Merkle hash tree. A Merkle Hash Tree (MHT) is a well-
studied authentication structure [17], which is intended to
efficiently and securely prove that a set of elements are
undamaged and unaltered. It is constructed as a binary
tree where the leaves in the MHT are the hashes of
authentic data values. Fig. 2 depicts an example of
authentication. The verifier with the authentic hr requests
for fx2; x7g and requires the authentication of the received
blocks. The prover provides the verifier with the auxiliary
authentication information (AAI) �2 ¼< hðx1Þ; hd > and
�7 ¼ <hðx8Þ; he>. The verifier can then verify x2 and x7 by
first computing hðx2Þ; hðx7Þ; hc ¼ hðhðx1Þkhðx2ÞÞÞ; hf ¼
hðhðx7Þkhðx8ÞÞÞ; ha ¼ hðhckhdÞ; hb ¼ hðhekhfÞ a n d hr ¼
hðhakhbÞ, and then checking if the calculated hr is the
same as the authentic one. MHT is commonly used to
authenticate the values of data blocks. However, in this
paper, we further employ MHT to authenticate both the
values and the positions of data blocks. We treat the leaf
nodes as the left-to-right sequence, so any leaf node can be
uniquely determined by following this sequence and the
way of computing the root in MHT.

3.2 Definition

ðpk; skÞ  KeyGenð1kÞ. This probabilistic algorithm is run by
the client. It takes as input security parameter 1k, and returns
public key pk and private key sk.
ð�; sigskðHðRÞÞÞ  SigGenðsk; F Þ. This algorithm is run by

the client. It takes as input private key sk and a file F which is an
ordered collection of blocks fmig, and outputs the signature set �,
which is an ordered collection of signatures f�ig on fmig. It also
outputs metadata—the signature sigskðHðRÞÞ of the root R of a
Merkle hash tree. In our construction, the leaf nodes of the Merkle
hash tree are hashes of HðmiÞ.
ðP Þ  GenProofðF;�; chalÞ. This algorithm is run by the

server. It takes as input a file F , its signatures �, and a challenge
chal. It outputs a data integrity proof P for the blocks specified
by chal.
fTRUE;FALSEg  V erifyProofðpk; chal; P Þ. This algo-

rithm can be run by either the client or the third party auditor
upon receipt of the proof P . It takes as input the public key pk, the
challenge chal, and the proof P returned from the server, and
outputs TRUE if the integrity of the file is verified as correct, or
FALSE otherwise.
ðF 0;�0; PupdateÞ  ExecUpdateðF;�; updateÞ. This algo-

rithm is run by the server. It takes as input a file F , its
signatures �, and a data operation request “update” from client.
It outputs an updated file F 0, updated signatures �0, and a proof
Pupdate for the operation.
fðTRUE; FALSE; sigskðHðR0ÞÞÞg  V erifyUpdate ðpk;

update; PupdateÞ. This algorithm is run by the client. It takes
as input public key pk, the signature sigskðHðRÞÞ, an operation
request “update,” and the proof Pupdate from server. If the
verification successes, it outputs a signature sigskðHðR0ÞÞ for
the new root R0, or FALSE otherwise.

3.3 Basic Solutions

Assume the outsourced data file F consists of a finite
ordered set of blocks m1;m2; . . . ;mn. One straightforward
way to ensure the data integrity is to precompute MACs for
the entire data file. Specifically, before data outsourcing, the
data owner precomputes MACs of F with a set of secret
keys and stores them locally. During the auditing process,
the data owner each time reveals a secret key to the cloud
server and asks for a fresh keyed MAC for verification. This
approach provides deterministic data integrity assurance
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straightforwardly as the verification covers all the data

blocks. However, the number of verifications allowed to be

performed in this solution is limited by the number of secret

keys. Once the keys are exhausted, the data owner has to

retrieve the entire file of F from the server in order to

compute new MACs, which is usually impractical due to

the huge communication overhead. Moreover, public

auditability is not supported as the private keys are

required for verification.
Another basic solution is to use signatures instead of

MACs to obtain public auditability. The data owner

precomputes the signature of each block mi (i 2 ½1; n�) and

sends both F and the signatures to the cloud server for

storage. To verify the correctness of F , the data owner can

adopt a spot-checking approach, i.e., requesting a number of

randomly selected blocks and their corresponding signa-

tures to be returned. This basic solution can provide

probabilistic assurance of the data correctness and support

public auditability. However, it also severely suffers from the

fact that a considerable number of original data blocks

should be retrieved to ensure a reasonable detection

probability, which again could result in a large communica-

tion overhead and greatly affects system efficiency. Notice

that the above solutions can only support the case of static

data, and none of them can deal with dynamic data updates.

3.4 Our Construction

To effectively support public auditability without having to

retrieve the data blocks themselves, we resort to the

homomorphic authenticator technique [2], [4]. Homo-

morphic authenticators are unforgeable metadata generated

from individual data blocks, which can be securely

aggregated in such a way to assure a verifier that a linear

combination of data blocks is correctly computed by

verifying only the aggregated authenticator. In our design,

we propose to use PKC-based homomorphic authenticator

(e.g., BLS signature [4] or RSA signature-based authenti-

cator [2]) to equip the verification protocol with public

auditability. In the following description, we present the

BLS-based scheme to illustrate our design with data

dynamics support. As will be shown, the schemes designed

under BLS construction can also be implemented in RSA

construction. In the discussion of Section 3.4, we show that

direct extensions of previous work [2], [4] have security

problems, and we believe that protocol design for support-

ing dynamic data operation is a major challenging task for

cloud storage systems.
Now we start to present the main idea behind our

scheme. We assume that file F (potentially encoded using

Reed-Solomon codes [18]) is divided into n blocks

m1;m2; . . . ;mn,1 where mi 2 ZZp and p is a large prime. Let

e : G�G! GT be a bilinear map, with a hash function

H : f0; 1g� ! G, viewed as a random oracle [19]. Let g be

the generator of G. h is a cryptographic hash function. The

procedure of our protocol execution is as follows:

3.4.1 Setup

The client’s public key and private key are generated by
invoking KeyGenð�Þ. By running SigGenð�Þ, the data file F
is preprocessed, and the homomorphic authenticators
together with metadata are produced.
KeyGenð1kÞ. The client generates a random signing key

pair ðspk; sskÞ. Choose a random � ZZp and compute
v g�. The secret key is sk ¼ ð�; sskÞ and the public key is
pk ¼ ðv; spkÞ.
SigGenðsk; F Þ. Given F ¼ ðm1;m2 . . . ;mnÞ, the client

chooses a random element u G. Let t ¼ nameknkuk
SSigsskðnameknkuÞ be the file tag for F . Then, the client
computes signature �i for each block miði ¼ 1; 2; . . . ; nÞ as
�i  ðHðmiÞ � umiÞ�. Denote the set of signatures by
� ¼ f�ig; 1 � i � n. The client then generates a root R

based on the construction of the MHT, where the leave
nodes of the tree are an ordered set of hashes of “file tags”
HðmiÞði ¼ 1; 2; . . . ; nÞ. Next, the client signs the root R

under the private key �: sigskðHðRÞÞ  ðHðRÞÞ�. The client
sends fF; t;�; sigskðHðRÞÞg to the server and deletes
fF;�; sigskðHðRÞÞg from its local storage (See Section 3.4
for the discussion of blockless and stateless verification).

3.4.2 Default Integrity Verification

The client or TPA can verify the integrity of the outsourced
data by challenging the server. Before challenging, the TPA
first use spk to verify the signature on t. If the verification
fails, reject by emitting FALSE; otherwise, recover u. To
generate the message “chal,” the TPA (verifier) picks a
random c-element subset I ¼ fs1; s2; . . . ; scg of set ½1; n�,
where we assume s1 � � � � � sc. For each i 2 I the TPA
chooses a random element �i  B � ZZp. The message “chal”
specifies the positions of the blocks to be checked in this
challenge phase. The verifier sends the chalfði; �iÞgs1�i�sc to
the prover (server).
GenProofðF;�; chalÞ. Upon receiving the challenge

chal ¼ fði; �iÞgs1�i�sc , the server computes

� ¼
Xsc
i¼s1

�imi 2 ZZp and � ¼
Ysc
i¼s1

��ii 2 G;

where both the data blocks and the corresponding signature
blocks are aggregated into a single block, respectively. In
addition, the prover will also provide the verifier with a small
amount of auxiliary information f�igs1�i�sc , which are the
node siblings on the path from the leaves fhðHðmiÞÞgs1�i�sc to
the rootR of the MHT. The prover responds the verifier with
proof P ¼ f�; �; fHðmiÞ;�igs1�i�sc ; sigskðHðRÞÞg.
V erifyProofðpk; chal; P Þ. Upon receiving the responses

from the prover, the verifier generates root R using
fHðmiÞ;�igs1�i�sc and authenticates it by checking
eðsigskðHðRÞÞ; gÞ ¼? eðHðRÞ; g�Þ. If the authentication fails,
the verifier rejects by emitting FALSE. Otherwise, the
verifier checks

eð�; gÞ ¼? e
Ysc
i¼s1

HðmiÞ�i � u�; v
 !

:

If so, output TRUE; otherwise FALSE. The protocol is
illustrated in Table 1.
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3.4.3 Dynamic Data Operation with Integrity Assurance

Now we show how our scheme can explicitly and efficiently
handle fully dynamic data operations including data
modification (M), data insertion (I), and data deletion (D)
for cloud data storage. Note that in the following descrip-
tions, we assume that the file F and the signature � have
already been generated and properly stored at server. The
root metadata R has been signed by the client and stored at
the cloud server, so that anyone who has the client’s public
key can challenge the correctness of data storage.

Data Modification: We start from data modification,
which is one of the most frequently used operations in
cloud data storage. A basic data modification operation
refers to the replacement of specified blocks with new ones.

Suppose the client wants to modify the ith block mi to

m0i. The protocol procedures are described in Table 2. At

start, based on the new block m0i, the client generates the

corresponding signature �0i ¼ ðHðm0iÞ � um
0
iÞ�. Then, he con-

structs an update request message “update ¼ ðM; i;m0i; �
0
iÞ”

and sends to the server, whereM denotes the modification

operation. Upon receiving the request, the server runs

ExecUpdateðF;�; updateÞ. Specifically, the server 1) re-

places the block mi with m0i and outputs F 0; 2) replaces

the �i with �0i and outputs �0; and 3) replaces HðmiÞ with

Hðm0iÞ in the Merkle hash tree construction and generates

the new root R0 (see the example in Fig. 3). Finally, the

server responses the client with a proof for this operation,
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TABLE 1
Protocols for Default Integrity Verification

TABLE 2
The Protocol for Provable Data Update (Modification and Insertion)

Fig. 3. Example of MHT update under block modification operation.

Here, ni and n0i are used to denote HðmiÞ and Hðm0iÞ, respectively.
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Pupdate ¼ ð�i; HðmiÞ; sigskðHðRÞÞ; R0Þ, where �i is the AAI

for authentication of mi. After receiving the proof for

modification operation from server, the client first generates

root R using f�i; HðmiÞg and authenticates the AAI or R by

checking eðsigskðHðRÞÞ; gÞ ¼? eðHðRÞ; g�Þ. If it is not true,

output FALSE, otherwise the client can now check whether

the server has performed the modification as required or

not, by further computing the new root value using

f�i; Hðm0iÞg and comparing it with R0. If it is not true,

output FALSE, otherwise output TRUE. Then, the client

signs the new root metadata R0 by sigskðHðR0ÞÞ and sends it

to the server for update. Finally, the client executes the

default integrity verification protocol. If the output is TRUE,

delete sigskðHðR0ÞÞ; Pupdate and m0i from its local storage.
Data Insertion: Compared to data modification, which

does not change the logic structure of client’s data file,
another general form of data operation, data insertion,
refers to inserting new blocks after some specified positions
in the data file F .

Suppose the client wants to insert block m� after the ith
block mi. The protocol procedures are similar to the data
modification case (see Table 2, now m0i can be seen as m�).
At start, based on m� the client generates the corresponding
signature �� ¼ ðHðm�Þ � um� Þ�. Then, he constructs an update
request message “update ¼ ðI ; i;m�; ��Þ” and sends to the
server, where I denotes the insertion operation. Upon
receiving the request, the server runs ExecUpdateðF;�;
updateÞ. Specifically, the server 1) stores m� and adds a leaf
hðHðm�ÞÞ “after” leaf hðHðmiÞÞ in the Merkle hash tree and
outputs F 0; 2) adds the �� into the signature set and outputs
�0; and 3) generates the new root R0 based on the updated
Merkle hash tree. Finally, the server responses the client
with a proof for this operation, Pupdate ¼ ð�i; HðmiÞ;
sigskðHðRÞÞ; R0Þ, where �i is the AAI for authentication of
mi in the old tree. An example of block insertion is
illustrated in Fig. 4, to insert hðHðm�ÞÞ after leaf node
hðHðm2ÞÞ, only node hðHðm�ÞÞ and an internal node C is
added to the original tree, where hc ¼ hðhðHðm2ÞÞk
hðHðm�ÞÞÞ. After receiving the proof for insert operation
from server, the client first generates root R using
f�i; HðmiÞg and then authenticates the AAI or R by
checking if eðsigskðHðRÞÞ; gÞ ¼ eðHðRÞ; g�Þ. If it is not true,
output FALSE, otherwise the client can now check whether
the server has performed the insertion as required or not, by
further computing the new root value using f�i; HðmiÞ;
Hðm�Þg and comparing it with R0. If it is not true, output
FALSE, otherwise output TRUE. Then, the client signs the
new root metadata R0 by sigskðHðR0ÞÞ and sends it to the
server for update. Finally, the client executes the default

integrity verification protocol. If the output is TRUE, delete
sigskðHðR0ÞÞ; Pupdate and m� from its local storage.

Data Deletion: Data deletion is just the opposite
operation of data insertion. For single block deletion, it
refers to deleting the specified block and moving all the
latter blocks one block forward. Suppose the server receives
the update request for deleting block mi, it will delete mi

from its storage space, delete the leaf node hðHðmiÞÞ in the
MHT and generate the new root metadata R0 (see the
example in Fig. 5). The details of the protocol procedures
are similar to that of data modification and insertion, which
are thus omitted here.

3.4.4 Batch Auditing for Multiclient Data

As cloud servers may concurrently handle multiple verifica-
tion sessions from different clients, given K signatures on K
distinct data files from K clients, it is more advantageous to
aggregate all these signatures into a single short one and
verify it at one time. To achieve this goal, we extend our
scheme to allow for provable data updates and verification in
a multiclient system. The key idea is to use the bilinear
aggregate signature scheme [20], which has the following
property: for any u1; u2; v 2 G; eðu1u2; vÞ ¼ eðu1; vÞ � eðu2; vÞ
and for any u; v 2 G; eð ðuÞ; vÞ ¼ eð ðvÞ; uÞ. As in the BLS-
based construction, the aggregate signature scheme allows
the creation of signatures on arbitrary distinct messages.
Moreover, it supports the aggregation of multiple signatures
by distinct signers on distinct messages into a single short
signature, and thus greatly reduces the communication cost
while providing efficient verification for the authenticity of
all messages.

Assume there areK clients in the system, and each client k
has data filesFi ¼ ðmk;1; . . . ;mk;nÞ, where k 2 f1; . . . ; Kg. The
protocol is executed as follows: For a particular client k, pick
random xk  ZZp, and compute vk ¼ gxk . The client’s public
key is vk 2 G and the public key is vk 2 ZZp. In the SigGen
phase, given the file Fk ¼ ðmk;1; . . . ;mk;nÞ, client k chooses a
random element uk  G and computes signature �k;i  
½Hðmk;iÞ � umk;i

k �
xk 2 G. In the challenge phase, the verifier sends

the query Q ¼ fði; �iÞgs1�i�sc to the prover (server) for
verification of all K clients. In the GenProof phase, upon
receiving the chal, for each client kðk 2 f1; . . . ; KgÞ, the prover
computes

�k ¼
X

fði;�iÞgs1�i�sc

�imk;i 2 ZZp and � ¼
YK
k¼1

Y
fði;�iÞgs1�i�sc

��ik;i

0
@

1
A

¼
YK
k¼1

Y
fði;�iÞgs1�i�sc

½Hðmk;iÞ � umk;i

k �
xk�i

0
@

1
A:

WANG ET AL.: ENABLING PUBLIC AUDITABILITY AND DATA DYNAMICS FOR STORAGE SECURITY IN CLOUD COMPUTING 853

Fig. 4. Example of MHT update under block insertion operation. Here, ni

and n� are used to denote HðmiÞ and Hðm�Þ, respectively.
Fig. 5. Example of MHT update under block deletion operation.
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The prover then responses the verifier with f�; f�kg1�k�K;
f�k;ig; fHðmk;iÞgg. In the VerifyProof phase, similar as the
single-client case, the verifier first authenticates tags Hðmk;iÞ
by verifying signatures on the roots (for each client’s file). If
the authentication succeeds, then, using the properties of
the bilinear map, the verifier can check if the following
equation holds:

eð�; gÞ ¼
YK
k¼1

e
Y

fði;�iÞgs1�i�sc

½Hðmk;iÞ��i � ðukÞ�k ; vk

0
@

1
A:

The above equation is similar to the checking equation in
the single-client case, and it holds because:

eð�; gÞ ¼ e
YK
k¼1

Y
fði;�iÞgs1�i�sc

��ik;i

0
@

1
A; g

0
@

1
A

¼ e
YK
k¼1

Y
fði;�iÞgs1�i�sc

Hðmk;iÞ � umk;i

k

� �xk�i0
@

1
A; g

0
@

1
A

¼
YK
k¼1

e
Y

fði;�iÞgs1�i�sc

½Hðmk;iÞ��i � ðukÞ�k
2
4

3
5
xk

; g

0
@

1
A

¼
YK
k¼1

e
Y

fði;�iÞgs1�i�sc

½Hðmk;iÞ��i � ðukÞ�k ; gxk
0
@

1
A:

3.5 Discussion on Design Considerations

Instantiations based on BLS and RSA. As discussed above,
we present a BLS-based construction that offers both public
auditability and data dynamics. In fact, our proposed scheme
can also be constructed based on RSA signatures. Compared
with RSA construction [2], [14], as a desirable benefit, the BLS
construction can offer shorter homomorphic signatures (e.g.,
160 bits) than those that use RSA techniques (e.g., 1,024 bits).
In addition, the BLS construction has the shortest query and
response (we does not consider AAI here): 20 and 40 bytes
[4]. However, while BLS construction is not suitable to
use variable sized blocks (e.g., for security parameter
� ¼ 80;mi 2 ZZp, where p is a 160-bit prime), the RSA
construction can support variable sized blocks. The reason
is that in RSA construction the order of QRN is unknown to
the server, so it is impossible to find distinct m1 and m2 such
that gm1 mod N ¼ gm2 mod N according to the factoring
assumption. But the block size cannot increase without limit,
as the verification block � ¼

Psc
i¼s1

�imi grows linearly with
the block size. Recall that hðHðmiÞÞ are used as the MHT
leaves, upon receiving the challenge the server can calculate
these tags on-the-fly or prestore them for fast proof
computation. In fact, one can directly use hðgmiÞ as the
MHT leaves instead of hðHðmiÞÞ. In this way, at the verifier
side the job of computing the aggregated signature � should
be accomplished after authentication of gmi . Now the
computation of aggregated signature � is eliminated at the
server side, as a trade-off, additional computation overhead
may be introduced at the verifier side.

Support for data dynamics. The direct extension of PDP
or PoR schemes to support data dynamics may have
security problems. We take PoR for example, the scenario

in PDP is similar. When mi is required to be updated, �i ¼
½HðnamekiÞumi �x should be updated correspondingly.
Moreover, HðnamekiÞ should also be updated, otherwise
by dividing �i by �0i, the adversary can obtain ½u�mi �x and
use this information and �mi to update any block and its
corresponding signature for arbitrary times while keeping �
consistent with �. This attack cannot be avoided unless
HðnamekiÞ is changed for each update operation. Also,
because the index information is included in computation
of the signature, an insertion operation at any position in F
will cause the updating of all following signatures. To
eliminate the attack mentioned above and make the
insertion efficient, as we have shown, we use HðmiÞ (or
gmi ) instead of HðnamekiÞ as the block tags, and the
problem of supporting fully dynamic data operation is
remedied in our construction. Note that different from the
public information nameki;mi is no longer known to client
after the outsourcing of original data files. Since the client or
TPA cannot compute HðmiÞ, this job has to be assigned to
the server (prover). However, by leveraging the advantage
of computing HðmiÞ, the prover can cheat the verifier
through the manipulation of HðmiÞ and mi. For example,
suppose the prover wants to check the integrity of m1 and
m2 at one time. Upon receiving the challenge, the prover
can just compute the pair ð�; �Þ using arbitrary combina-
tions of two blocks in the file. Now the response formulated
in this way can successfully pass the integrity check. So, to
prevent this attack, we should first authenticate the tag
information before verification, i.e., ensuring these tags are
corresponding to the blocks to be checked.

In basic PDP constructions, the system stores static files
(e.g., archival or backup) without error correction capabil-
ity. Thus, file updates can be performed efficiently. In a PoR
system, as all or part of data files are encoded, frequent or
small data updates require the updates of all related
(encoded) files. In this paper, we do not constrain ourselves
in a specific model, and our scheme can be applied in both
PDP and PoR models. However, the design of protocols for
supporting efficient data operation in PoR systems still
remains an open problem.

Designs for blockless and stateless verification. The
naive way of realizing data integrity verification is to make
the hashes of the original data blocks as the leaves in MHT,
so the data integrity verification can be conducted without
tag authentication and signature aggregation steps. How-
ever, this construction requires the server to return all the
challenged blocks for authentication, and thus is not
efficient for verification purpose. For this reason, this paper
adopts the blockless approach, and we authenticate the
block tags instead of original data blocks in the verification
process. As we have described, in the setup phase the
verifier signs the metadata R and stores it on the server to
achieve stateless verification. Making the scheme fully
stateless may cause the server to cheat: the server can
revert the update operation and keep only old data and its
corresponding signatures after completing data updates.
Since the signatures and the data are consistent, the client or
TPA may not be able to check whether the data are up-to-
date. However, a rational cheating server would not do this
unless the reversion of data updates benefits it much.
Actually, one can easily defend this attack by storing the
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root R on the verifier, i.e., R can be seen as public
information. However, this makes the verifier not fully
stateless in some sense since TPA will store this information
for the rest of time.

Designs for distributed data storage security. To further
enhance the availability of the data storage security,
individual user’s data can be redundantly stored in multi-
ple physical locations. That is, besides being exploited at
individual servers, data redundancy can also be employed
across multiple servers to tolerate faults or server crashes as
user’s data grow in size and importance. It is well known
that erasure-correcting code can be used to tolerate multiple
failures in distributed storage systems. In cloud data
storage, we can rely on this technique to disperse the data
file F redundantly across a set of n ¼ mþ k distributed
servers. A ½mþ k; k�-Reed-Solomon code is used to create k
redundancy parity vectors from m data vectors in such a
way that the original m data vectors can be reconstructed
from any m out of the mþ k data and parity vectors. By
placing each of the mþ k vectors on a different server, the
original data file can survive the failure of any k of the
mþ k servers without any data loss. Such a distributed
cryptographic system allows a set of servers to prove to a
client that a stored file is intact and retrievable.

4 SECURITY ANALYSIS

In this section, we evaluate the security of the proposed

scheme under the security model defined in Section 2.2.

Following [4], we consider a file F after Reed-Solomon

coding.

Definition 1 (CDH Problem). The Computational Diffie-

Hellman problem is that, given g; gx; gy 2 G for unknown

x; y 2 ZZp, to compute gxy.

We say that the ðt; �Þ-CDH assumption holds in G if no t-

time algorithm has the non-negligible probability � in

solving the CDH problem. A proof-of-retrievability protocol

is sound if any cheating prover that convinces the

verification algorithm that it is storing a file F is actually

storing that file, which we define in saying that it yields up

the file F to an extractor algorithm which interacts with it

using the proof-of-retrievability protocol. We say that the

adversary (cheating server) is �-admissible if it convincingly

answers an �-fraction of verification challenges. We for-

malize the notion of an extractor and then give a precise

definition for soundness.

Theorem 1. If the signature scheme is existentially unforgeable and
the computational Diffie-Hellman problem is hard in bilinear
groups, no adversary against the soundness of our public-
verification scheme could cause verifier to accept in a proof-of-
retrievability protocol instance with non-negligible probability,
except by responding with correctly computed values.

Proof. See Appendix. tu
Theorem 2. Suppose a cheating prover on an n-block file F is

well-behaved in the sense above, and that it is �-admissible. Let
! ¼ 1=#Bþ ð�nÞ‘=ðn� cþ 1Þc. Then, provided that �� ! is
positive and non-negligible, it is possible to recover a �-fraction
of the encoded file blocks in Oðn=ð�� �ÞÞ interactions with
cheating prover and in Oðn2 þ ð1þ �n2ÞðnÞ=ð�� !ÞÞ time
overall.

Proof. The verification of the proof-of-retrievability is
similar to [4], we omit the details of the proof here.
The difference in our work is to replace HðiÞ with HðmiÞ
such that secure update can still be realized without
including the index information. These two types of tags
are used for the same purpose (i.e., to prevent potential
attacks), so this change will not affect the extraction
algorithm defined in the proof-of-retrievability. We can
also prove that extraction always succeeds against a
well-behaved cheating prover, with the same probability
analysis given in [4]. tu

Theorem 3. Given a fraction of the n blocks of an encoded file F ,
it is possible to recover the entire original file F with all but
negligible probability.

Proof. Based on the rate-� Reed-Solomon codes, this result
can be easily derived, since any �-fraction of encoded file
blocks suffices for decoding. tu

The security proof for the multiclient batch auditing is
similar to the single-client case, thus omitted here.

5 PERFORMANCE ANALYSIS

We list the features of our proposed scheme in Table 3 and
make a comparison of our scheme and the state of the art.
The scheme in [14] extends the original PDP [2] to support
data dynamics using authenticated skip list. Thus, we call it
DPDP scheme thereafter. For the sake of completeness, we
implemented both our BLS and RSA-based instantiations as
well as the state-of-the-art scheme [14] in Linux. Our
experiment is conducted using C on a system with an Intel
Core 2 processor running at 2.4 GHz, 768 MB RAM, and a
7200 RPM Western Digital 250 GB Serial ATA drive with an
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TABLE 3
Comparisons of Different Remote Data Integrity Checking Schemes

The security parameter � is eliminated in the costs estimation for simplicity. � The scheme only supports bounded number of integrity challenges and
partially data updates, i.e., data insertion is not supported. y No explicit implementation of public auditability is given for this scheme.
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8 MB buffer. Algorithms (pairing, SHA1 etc.) are imple-
mented using the Pairing-Based Cryptography (PBC)
library version 0.4.18 and the crypto library of OpenSSL
version 0.9.8h. To achieve 80-bit security parameter, the
curve group we work on has a 160-bit group order and the
size of modulus N is 1,024 bits. All results are the averages
of 10 trials. Table 4 lists the performance metrics for 1 GB
file under various erasure code rate � while maintaining
high detection probability (99 percent) of file corruption. In
our schemes, rate � denotes that any �-fraction of the blocks
suffices for file recovery as proved in Theorem 3, while in
[14], rate � denotes the tolerance of file corruption.
According to [2], if t fraction of the file is corrupted, by
asking proof for a constant c blocks of the file, the verifier
can detect this server misbehavior with probability
p ¼ 1� ð1� tÞc. Let t ¼ 1� � and we get the variant of this
relationship p ¼ 1� �c. Under this setting, we quantify the
extra cost introduced by the support of dynamic data in our
scheme into server computation, verifier computation as
well as communication overhead.

From Table 4, it can be observed that the overall
performance of the three schemes are comparable to each
other. Due to the smaller block size (i.e., 20 bytes) compared
to RSA-based instantiation, our BLS-based instantiation is
more than two times faster than the other two in terms of
server computation time. However, it has larger computa-
tion cost at the verifier side as the pairing operation in BLS
scheme consumes more time than RSA techniques. Note
that the communication cost of DPDP scheme is the largest
among the three in practice. This is because there are 4-
tuple values associated with each skip list node for one
proof, which results in extra communication cost as
compared to our constructions. The communication over-
head (server’s response to the challenge) of our RSA-based
instantiation and DPDP scheme [14] under different block
sizes is illustrated in Fig. 6. We can see that the commu-
nication cost grows almost linearly as the block size
increases, which is mainly caused by the increasing in size
of the verification block � ¼

Psc
i¼s1

�imi. However, the
experiments suggest that when block size is chosen around
16 KB, both schemes can achieve an optimal point that
minimizes the total communication cost.

We also conduct experiments for multiclient batch
auditing and demonstrate its efficiency in Fig. 7, where
the number of clients in the system is increased from 1 to
approximately 100 with intervals of 4. As we can see, batch
auditing not only enables simultaneously verification from
multiple-client, but also reduces the computation cost on
the TPA side. Given total K clients in the system, the batch
auditing equation helps reduce the number of expensive
pairing operations from 2K, as required in the individual
auditing, to K þ 1. Thus, a certain amount of auditing time
is expected to be saved. Specifically, following the same

experiment setting as � ¼ 99% and 97%, batch auditing
indeed saves TPA’s computation overhead for about 5 and
14 percent, respectively. Note that in order to maintain
detection probability of 99 percent, the random sample size
in TPA’s challenge for � ¼ 99% is quite larger than � ¼ 97%:
460 versus 152. As this sample size is also a dominant factor
of auditing time, this explains why batch auditing for � ¼
99% is not as efficient as for � ¼ 97%.

6 CONCLUSION

To ensure cloud data storage security, it is critical to enable a
TPA to evaluate the service quality from an objective and
independent perspective. Public auditability also allows
clients to delegate the integrity verification tasks to TPA
while they themselves can be unreliable or not be able to
commit necessary computation resources performing con-
tinuous verifications. Another major concern is how to
construct verification protocols that can accommodate
dynamic data files. In this paper, we explored the problem
of providing simultaneous public auditability and data
dynamics for remote data integrity check in Cloud Comput-
ing. Our construction is deliberately designed to meet these
two important goals while efficiency being kept closely in
mind. To achieve efficient data dynamics, we improve the
existing proof of storage models by manipulating the classic
Merkle Hash Tree construction for block tag authentication.
To support efficient handling of multiple auditing tasks, we
further explore the technique of bilinear aggregate signature
to extend our main result into a multiuser setting, where TPA
can perform multiple auditing tasks simultaneously. Ex-
tensive security and performance analysis show that the
proposed scheme is highly efficient and provably secure.
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TABLE 4
Performance Comparison under Different Tolerance Rate � of File Corruption for 1GB File

The block size for RSA-based instantiation and scheme in [14] is chosen to be 4 KB.

Fig. 6. Comparison of communication complexity between our RSA-

based instantiation and DPDP [14], for 1 GB file with variable block

sizes. The detection probability is maintained to be 99 percent.
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APPENDIX

PROOF OF THE THEOREM 1

Proof. It is easy to prove that the signature scheme is
existentially unforgeable with the assumption that BLS
[16] short signature scheme is secure. In concrete, assume
there is a secure BLS signature scheme, with public key
y ¼ g� and a map-to-point hash function H. If there is an
adversary that can break our signature scheme, we show
how to use this adversary to forge a BLS signature as
follows: Set u ¼ gx0 by choosing x0 from Zp. For any
signature query on message m, we can submit this
message to BLS signing oracle and get � ¼ HðmÞ�.
Therefore, the signing oracle of this new signature
scheme can be simulated as �0 ¼ �ymx0 ¼ ðHðmÞgmx0Þ�.
Finally, if there is any adversary can forge a new
signature �0 ¼ ðHðm0Þum0 Þ� on a message m0 that has
never been queried, we can get a forged BLS signature on
the message m0 as � ¼ �0=ym0x0 ¼ Hðm0Þ�. This completes
the proof of the new signature scheme that the BLS
signature scheme is secure.

We then prove the theorem by using a sequence of
games as defined in [4]. The first game, Game 0, is
simply the challenge game, which is similar to [4], with
the changes for public auditability sketched. Game 1 is
same as Game 0, with one difference. The challenger
keeps a list of all signed tags ever issued as part of a
store-protocol query. If the adversary ever submits a tag
either in initiating a proof-of-retrievability protocol or as
the challenge tag, the challenger will abort if it is a valid
tag that has never been signed by the challenger. Based
on the definition of Games 0 and 1, it is obviously that we
can use the adversary to construct a forger against the
signature scheme, if there is a difference in the
adversary’s success probability between Games 0 and 1.

Game 2 is the same as Game 1, except that in Game 2, the

challenger keeps a list of its responses to queries from the

adversary. Now the challenger observes each instance of

the proof-of-retrievability protocol with the adversary. Let

P ¼ f�; �; fHðmiÞ;�igs1�i�sc ; sigskðHðRÞÞg be t he ex-

pected response that would have been obtained from an

honest prover. The correctness of HðmiÞ can be verified

through fHðmiÞ;�igs1�i�sc and sigskðHðRÞÞ. The correct-

ness of the proof can be verified based on the following

equation eð�; gÞ ¼ eð
Q
fði;�iÞgs1�i�sc

HðmiÞ�i � u�; vÞ. Assume

the adversary’s response is P 0. Because of the authentica-

tion in MHT, the second part in P 0 should be the same

with fHðmiÞ;�igs1�i�sc and sigskðHðRÞÞ. Suppose P 0 ¼
f�0; �0; fHðmiÞ;�igs1�i�sc ; sigskðHðRÞÞg is the adversary’s

response. The verification of ð�0; �0Þ is eð�0; gÞ ¼
eð
Q
fði;�iÞgs1�i�sc

HðmiÞ�i � u�
0
; vÞ. Obviously, �0 6¼ �, other-

wise, �0 ¼ �, which contradicts our assumption in this

game. Define �� ¼ �0 � �. With this adversary, the

simulator could break the challenge CDH instance as

follows: Given ðg; g�; hÞ 2 G, the simulator is asked to

output h�. The simulator sets v ¼ g� and u ¼ gahb for

a; b 2 Z�p . The simulator could answer the signature query

with similar method as described in [4], by letting

HðmiÞ ¼ grih�mi . Finally, the adversary outputs

P 0 ¼ f�0; �0; fHðmiÞ;�igs1�i�sc ; sigskðHðRÞÞg:

We obtain eð�0=�; gÞ ¼ eðu��; vÞ ¼ eððgahbÞ��; g�Þ. From

this equation, we have eð�0��1v�a��; gÞ ¼ eðh; vÞb��.

Therefore, h� ¼ ð�0��1va��Þ
1

b�� because v ¼ g�. To analyze

the probability that the challenger aborts in the game, we

only need to compute the probability that b�� ¼ 0 mod

p. Because b is chosen by the challenger and hidden from

the adversary, the probability that b�� ¼ 0 mod p will be

only 1=p, which is negligible.

Game 3 is the same as Game 2, with the following

difference: As before, the challenger observes proof-of-

retrievability protocol instances. Suppose the file that
causes the abort is that the signatures are f�ig. Suppose

Q ¼ ði; viÞs1�i�sc is the query that causes the challenger to

abort, and that the adversary’s response to that query

was P 0 ¼ f�0; �0; fHðmiÞ;�igs1�i�sc ; sigskðHðRÞÞg. Let P ¼
f�; �; fHðmiÞ;�igs1�i�sc ; sigskðHðRÞÞg be the expected

WANG ET AL.: ENABLING PUBLIC AUDITABILITY AND DATA DYNAMICS FOR STORAGE SECURITY IN CLOUD COMPUTING 857

Fig. 7. Performance comparison between individual auditing and batch auditing. The average per client auditing time is computed by dividing total

auditing time by the number of clients in the system. For both tolerance rate � ¼ 99% and � ¼ 97%, the detection probability is maintained to be

99 percent.
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response obtained from an honest prover. We have
proved in Game 2 that � ¼ �0. It is only the values � and

�0 that can differ. Define �� ¼ �0 � �. The simulator

answers the adversary’s queries. Finally, The adversary

outputs a forged signature

P 0 ¼ f�0; �0; fHðmiÞ;�igs1�i�sc ; sigskðHðRÞÞg:

Now we have eð�0; gÞ ¼ eð
Q
fði;�iÞgs1�i�sc

HðmiÞ�i � u�
0
; vÞ ¼

eð�; gÞ ¼ eð
Q
fði;�iÞgs1�i�sc

HðmiÞ�i � u�; vÞ. From this equa-

tion, we have 1 ¼ u��. In this case, �� ¼ 0 mod p.

Therefore, we have � ¼ �0 mod p.
As we analyzed above, there is only negligible

difference probability between these games. This com-
pletes the proof. tu
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